ADALM2000实验:发射极跟随器_BJT
目标
本次实验的目的是研究简单的NPN发射极跟随器,有时也被称为共集电极配置 。
材料
·ADALM2000主动学习模块
·无焊面包板
·跳线
·一个2.2kΩ电阻(RL)
·一个小信号NPN晶体管(Q1采用2N3904)
说明
面包板连接如图2所示 。任意波形发生器W1的输出连接至Q1的基极端子 。示波器输入1+(单端)也连接至W1输出 。集电极端子连接至正极(Vp)电源 。发射极端子连接至2.2kΩ负载电阻和示波器输入2+(单端) 。负载电阻的另一端连接至负极(Vn)电源 。要测量输入-输出误差,可以将2+连接至Q1的基极,2–连接至发射极,以显示示波器通道2的差值 。
文章插图
图1.发射极跟随器
硬件设置
波形发生器配置为1kHz正弦波,峰峰值幅度为4V,偏移为0 。示波器通道2的单端输入(2+)用于测量发射极的电压 。示波器配置为连接通道1+以显示AWG发生器输出 。在测量输入-输出误差时,应连接示波器的通道2,以显示2+和2–之间的差值 。
文章插图
图2.发射极跟随器面包板电路
程序步骤
配置示波器以捕获所测量的两个信号的多个周期 。产生的波形如图3所示 。
文章插图
图3.发射极跟随器波形
发射极跟随器的增量增益(VOUT/VIN)理想值为1,但总是略小于1 。增益一般通过以下公式计算:
文章插图
从公式可以看出,要获得接近1的增益,我们可以增大RL或减小re 。也可以看出,re是IE的函数,IE增大,re会减小 。此外,从电路可以看出,IE与RL相关,如果RL增大,IE会减小 。在简单的电阻负载发射极跟随器中,这两种效应相互抵消 。所以,要优化跟随器的增益,我们需要找到能在不影响另一方的情况下降低re或增大RL的方法 。如果从另一个角度来看跟随器,因为晶体管VBE本身的DC偏移,在预期的摆幅内输入和输出之间的差值应是恒定的 。受简单的电阻负载RL影响,发射集电流IE会随着输出上下摆动而升高和降低 。因为VBE是IE的指数函数,当IE的变化系数为2时,VBE的变化幅度约为18mV(室温下) 。以+2V至–2V的摆幅为例,最小IE=2V/2.2kΩ或0.91mA,最大IE=6V/2.2kΩ或2.7mA 。VBE的变化幅度为28mV 。根据这些实验结果,我们能从一个方面改善发射极跟随器 。为了让放大器晶体管发射极电流固定不变,现在使用“ADALM2000实验:BJT电流镜”中的电流镜来替代发射极负载电阻 。电流镜能在宽电压范围内获取较为恒定的电流 。晶体管中这种较为恒定的电流会导致VBE相当恒定 。从另一个角度来看,电流源中极高的输出电阻可以有效提高RL,但re保持为电流设定的低值 。
改善的发射极跟随器
附加材料
一个3.2kΩ电阻(将1kΩ和2.2kΩ电阻串联)
一个小信号NPN晶体管(Q1采用2N3904)
两个小信号NPN晶体管(Q2和Q3均采用SSM2212),以实现最佳VBE匹配
说明
面包板连接如图4和图5所示 。
文章插图
图4.已改善的发射极跟随器
硬件设置
波形发生器配置为100Hz三角波,峰峰值幅度为3V,偏移为0 。示波器通道2的单端输入(2+)用于测量Q1的发射极的电压 。示波器配置为连接通道1+以显示AWG发生器输出 。在测量输入-输出误差时,应连接示波器的通道2,以显示2+和2–之间的差值 。
文章插图
图5.改善的发射极跟随器面包板电路
程序步骤
配置示波器以捕获所测量的两个信号的多个周期 。产生的波形如图6所示 。
文章插图
图6.改善的发射极跟随器波形
文章插图
图7.电阻和电流源负载的输入-输出误差的Excel图示例
低偏移跟随器
我们此前讨论的跟随器电路具有内置偏移–VBE 。接下来使用的电路利用PNP发射极跟随器的VBE向上偏移来抵消NPN发射极跟随器的VBE向下偏移 。
材料
·一个6.8kΩ电阻
·一个10kΩ电阻
·一个0.01μF电容
·一个小信号PNP晶体管(Q1采用2N3906)
·三个小信号NPN晶体管(Q2、Q3和Q4采用2N3904或SSM2212)
说明
面包板连接如图8和图9所示 。函数发生器的输出连接至PNP晶体管Q1的基极端子 。Q1的集电极端子连接至二极管NPNQ3,这是电流镜的输入 。发射极端子连接至电阻R1和NPN晶体管Q2的基极端子 。示波器输入2+连接至Q2的发射极和Q4的集电极 。Q3和Q4的发射集连接至负极(Vn)电源 。为了实现最佳晶体管匹配,Q3和Q4使用SSM2212NPN匹配对 。
文章插图
图8.低偏移跟随器
硬件设置
波形发生器配置为1kHz正弦波,峰峰值幅度为4V,偏移为0 。示波器输入通道2设置为500mV/div 。
文章插图
图9.低偏移跟随器面包板电路
程序步骤
配置示波器以捕获所测量的两个信号的多个周期 。产生的波形如图10所示 。
文章插图
图10.低偏移跟随器波形
在简单的发射极跟随器驱动容性负载时,会产生一个问题 。由于发射极电流仅受β乘以基极电流的限制,该倍数由驱动基极的信号源提供,因此输出的上升时间相对较快 。下降时间可能慢的多,会受发射集电阻或电流源限制 。
平衡压摆率跟随器
材料
·两个2.2kΩ电阻
·一个10kΩ电阻
·一个0.01μF电容
·三个小信号PNP晶体管(Q2、Q3和Q4采用2N3906或SSM2220)
·三个小信号NPN晶体管(Q1、Q5和Q6采用2N3904或SSM2212)
说明
图11所示的电路在负载电流变化时,使用反馈来调节发射极跟随器中的电流 。拉动负极输出的电流可以达到N(NPN镜的增益)乘以PNPQ3的电流 。为了实现最佳晶体管匹配,Q3和Q4使用SSM2220PNP匹配对,Q5和Q6使用SSM2212NPN匹配对(NPN电流镜增益为1) 。添加第二个SSM2212,与Q5并联(以提高电流镜的增益) 。
文章插图
图11.平衡压摆率跟随器
硬件设置
波形发生器配置为1kHz正弦波,峰峰值幅度为4V,偏移为0 。示波器输入通道2设置为1V/div 。
文章插图
图12.平衡压摆率跟随器面包板电路
程序步骤
配置示波器以捕获所测量的两个信号的多个周期 。产生的波形如图13所示 。
文章插图
图13.平衡压摆率跟随器波形
改善发射极跟随器的另一种方法是通过负反馈来降低有效re 。可以通过增加第二个晶体管,通过增大开环增益来增大负反馈因子,以此降低re 。单个晶体管被一个反馈对取代,后者向第一个晶体管的发射集提供100%电压反馈 。这个反馈对通常被称为互补反馈对 。R2的值决定着能否实现出色的线性度,这是因为它决定了晶体管Q1的IC,也决定了其集电极的负载 。
互补反馈对发射极跟随器
材料
·一个2.2kΩ电阻
·一个10kΩ电阻
·一个小信号NPN晶体管(Q1采用2N3904)
·一个小信号PNP晶体管(Q2采用2N3906)
说明
面包板连接如图14和图15所示 。
文章插图
图14.互补反馈对发射极跟随器 。
硬件设置
波形发生器配置为1kHz正弦波,峰峰值幅度为2V,偏移为0 。示波器输入通道2设置为1V/div 。
程序步骤
配置示波器以捕获所测量的两个信号的多个周期 。产生的波形如图16所示 。
文章插图
问题:
您可以给出发射极跟随器电路的三个特性吗?
您可以在学子专区博客上找到问题答案 。
文章插图
作者简介
DougMercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位 。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利 。他于1995年被任命为ADI研究员 。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿 。2016年,他被任命为RPIECSE系的驻校工程师 。
AntoniuMiclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为CircuitsfromtheLab?、QA自动化和流程管理开发嵌入式软件 。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司 。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工程学士学位 。
文章插图
【ADALM2000实验:发射极跟随器_BJT】
推荐阅读
- 被做到晕是一种怎样的体验?看看这位网红女医生做实验麻晕自己
- ReRAM准备走出实验室了吗?
- 核心人员曾就职军工实验所,深交所问询晶导微技术来源
- 美国实验室感染致命病毒小白鼠失踪 和美国的疫情有关吗
- 一氧化碳还原氧化铁反应的化学方程式「一氧化碳还原氧化铁实验要点和步骤」
- LitePoint 5G实验室近日台北正式落成
- 中科曙光与之江实验室签约,为数字浙江注入新动能
- 张家界建方舱实验室 张家界湘西演出疫情
- 张家界建成13个方舱核酸检测实验室 移动方舱核酸检测实验室
- Imagination宣布成立IMG实验室,致力于创造突破性技术