浅谈二维微机电_MEMS阵列对移动光谱分析仪的影响
【浅谈二维微机电_MEMS阵列对移动光谱分析仪的影响】 在近红外(NIR)光谱分析领域中,一个将便携性与高性能实验室系统的准确性和功能性组合在一起的系统将极大地改进实时分析 。由一块电池供电的小型手持式光谱分析仪的开发可以实现对工业过程、或食品成熟度的评估在现场进行更有效的监控 。
大多数色散光谱分析测量在一开始采用的都是同样的方式 。被分析的光通过一个小狭缝;这个狭缝与一个光栅组合在一起,共同控制这个仪器的分辨率 。这个衍射光栅专门设计用于以已知的角度反射不同波长的光 。这个波长的空间分离使得其它系统可以根据波长来测量光强度 。
传统光谱测量架构的主要不同之处在于散射光的测量方式 。两种常见的方法有(1)与散射光物理扫描组合在一起的单元素(或单点)探测器,以及(2)将散射光在一组探测器上成像 。
使用MEMS技术的方法 使用具有一个单点探测器、基于光学微机电系统 (MEMS) 阵列技术的全新方法可以克服传统光谱分析方法中的很多限制 。在基于单点探测器的系统中,一个固态光学MEMS阵列用简单、空间波长滤波器取代了传统的电动光栅 。这个方法可以在消除精细控制电动系统中问题的同时,利用单点探测器的性能优势 。近些年,此类系统已经投入生产,其中,扫描光栅被取代,并且MEMS器件过滤每一个特定波长进入单点探测器 。这个方法在实现更加小巧和稳健耐用光谱分析仪的同时,也表现出很高的性能 。
相对于线性阵列探测器架构,光学MEMS阵列的使用具有数个优势 。首先,可以使用更大的单元素探测器,以提高采光量,并极大降低系统成本和复杂度,这对于红外系统更是如此 。此外,由于不使用阵列探测器,像素到像素噪声被消除了,而这可以极大地提升信噪比(SNR)性能 。SNR性能的提高可以在更短时间内获得更加准确的测量结果 。
在一个使用MEMS技术的光谱分析系统中,衍射光栅和聚焦元件的功能与之前一样,但来自聚焦元件的光在MEMS阵列上成像 。要选择一个用于分析的波长,一个特定的光谱响应波段被激活,这样的话,就可以将光引入到单点探测器中进行采集和测量 。
如果MEMS器件高度可靠,能够生成可预计的滤波器响应,并且在不同的时间和温度下保持恒定,那么这些优势就可以实现 。
将一个DLP® 芯片或数字微镜器件(DMD)用作一个空间光调制器,并且在一个光谱分析仪系统架构中将其用作MEMS器件的话,可以克服数个难题 。首先,使用一组铝制微镜来接通和关闭进入单点探测器的光,这在广泛的波长范围内是光学有效的 。其次,数字微镜的打开和关闭状态由机械止动装置和互补金属氧化物半导体(CMOS)静止随机访问存储器(SRAM)单元的锁存电路控制,从而提供固定的电压镜控制 。这个固定电压、静止控制意味着这个系统不需要机械扫描或模拟控制环路,并且能够简化校准 。它还使得光谱分析仪设计更能免受温度、老化或振动等错误源的影响 。
DMD的可编程属性具有很多优势 。其中某项优势会在进行光谱分析仪架构设计时显现——如果以被用作滤波器的微镜的寻址列为基础 。由于DMD分辨率通常高于所需的光谱,DMD区域会出现欠填充的情况,并且会对光谱过采样 。这使得波长选择完全可编程,并且在光引擎出现极端机械位移的情况下,将额外微镜用作重新校准列 。
此外, DMD是一个二维可编程阵列,这为用户提供高度的灵活性 。通过选择不同的列数量,可以调节分辨率和吞吐量 。扫描时间可动态调整,如此一来,用户可对所需波长进行更长时间、更加详细的检查,从而更好地使用仪器时间和功能 。此外,相对于固定滤波器器具1,诸如采用的Hadamard图形等高级孔径编码技术,可实现高度的灵活性和更高性能 。
总之,与目前的光谱分析系统相比,使用DMD的光谱分析器件可实现更高分辨率、更高灵活性、更加稳健耐用、更小的外形尺寸和更低的成本,从而使得它们对于广泛的商业和工业应用更有吸引力 。
单探测器架构消除噪声 目前基于线性阵列的光谱分析仪主要受到两个因素的限制 。首先,探测器的波长选择受到像素孔径的限制 。探测器的尺寸决定了采集到的光量,从而影响SNR 。诸如Hamamatsu G9203-256的常见磷化砷镓铟(InGaAs)256像素线性阵列的尺寸为50微米 x 500微米 。相反地,一个数字微镜阵列是一个完全可编程的矩阵,可以针对应用来配置列的数量和扫描技术 。这可以将更大的信号呈现给通常与DMD一同使用的更大的1毫米或2毫米的单点探测器 。将窄带光过滤到一个线性阵列中——通常是50微米宽像素——也许会出现串扰的问题 。像素到像素干扰会成为读取过程中产生噪声的主要原因 。这些干扰可通过单探测器架构消除 。此外, 通过利用1kHz至4kHz的数字微镜扫描速度,单点探测器可以达到与平行多点采样相类似的驻留时间 。对于基于MEMS ——或基于DMD——的紧凑型光谱分析仪引擎,结果显示SNR的范围大于10000:1 。
对于超级移动光谱分析仪十分关键的小型、高分辨率2D MEMS阵列
为了尽可能地提高性能,用户需要考虑可被用于将光线反射至探测器的MEMS总面积 。然后,将这个面积与可用单点探测器孔径尺寸仔细匹配 。
一个采用5.4微米微镜的DMD具有超过40万个可用像素,并且可以针对700纳米至2500纳米的波长进行优化 。该款DMD是DLP2010NIR,它采用一个被称为TRP的全新像素架构 。如图1中所见,这个像素提供17度的倾斜角 。DLP2010NIR在一个评估模块中运行;这个评估模块提供针对光谱分析应用场景的独特光学架构 。一个利用17度接通和关闭角度的光学路径可以用一个尽可能减少散射光的小巧引擎实现高性能感测分辨率 。
推荐阅读
- 电子显微镜的新贵智能电镜初出茅庐 它的作用是什么
- 浅谈国内外智能制造产业的现状分析
- 浅谈工业限位开关应用故障及解决方法
- 浅谈“工业4.0”的7个核心工业技术领域
- 伺服电机成就了机器人 浅谈电机的前沿应用
- 微特电机制造市场预测 预计2022销售收入将达4000亿元
- 浅谈电机堵转及其测试方法
- 一维、二维、三维电机的性能分析
- TI推出采用CapTIvate?技术的MSP430?微控制器_MCU系列产品
- 基于爱特梅尔AVR的微型节能自动浸焊机的软硬件设计