平行四边形有哪些性质,平行四边形的中点有什么性质( 二 )


五、正方形与矩形、菱形、平行四边形的关系:
矩形、菱形、正方形都是特殊的平行四边形 , 其中正方形既是特殊的矩形 , 又是特殊的菱形.矩形、菱形、正方形都是特殊的平行四边形 , 它们的包含关系如图.

六、中点四边形与原四边形的关系:
依次连接对角线相等的四边形各边中点所得四边形是菱形;
依次连接对角线互相垂直的四边形各边中点所得四边形是矩形;
依次连接对角线相等且垂直的四边形各边中点所得四边形是正方形;
七、等腰梯形
1、等腰梯形的性质:等腰梯形两腰相等;等腰梯形同一底上的两个角相等;等腰梯形对角线相等 。
2、等腰梯形判定:
两腰相等的梯形是等腰梯形; 同一底上两个角相等的梯形是等腰梯形 。
平行四边形有哪些性质和判定呀?(1)平行四边形对边平行且相等.
(2)平行四边形两条对角线互相平分.(菱形和正方形)
(3)平行四边形的对角相等,两邻角互补
(4)连接任意四边形各边的中点所得图形是平行四边形.(推论)
(5)平行四边形的面积等于底和高的积.(可视为矩形)
(6)平行四边形是旋转对称图形,旋转中心是两条对角线的交点.
(7)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形.
(8)平行四边形是中心对称图形,对称中心是两对角线的交点.
(9)一般的平行四边形不是轴对称图形,菱形是轴对称图形.
(10)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和(可用余弦定理证明).
(11)平行四边形对角线把平行四边形面积分成四等分.

推荐阅读